The QCD Analysis of the Structure Functions and Effective Nucleon Mass

A. V. Sidorov
Bogoliubov Theoretical Laboratory, Joint Institute for Nuclear Research
Dubna, Moscow Region 141 980, Russia
(Received December 12, 1995)

On the basis of the target mass corrections to structure functions of deep-inelastic scattering of leptons, we evaluate effective nucleon mass that turns out to be twice $M_{\text{nuc.}}$ for deep-inelastic scattering on the nucleus target and equals $M_{\text{nuc.}}$ for the hydrogen target.

PACS. 12.38.Bx – Perturbative calculations.
PACS. 13.60.Hb – Total and inclusive cross sections.
PACS. 13.60.-i – Photon and charged-lepton interactions with hadrons.

Deep-inelastic scattering of leptons provides a precise information on structure functions (SF) of a nucleon. It is well known that when target mass corrections (TMC) are taken into account, the QCD description of the SF of deep-inelastic scattering is improved. This effect is of order $\frac{A^4 z_{\text{clus.}}}{Q^2}$. In this article, we are going to consider the question whether the mass of a nucleon is the best value for the description of data or in order to make the fit better, one has to use another value $M_{\text{eff.}}$ which could differ from the mass of nucleon.

The Nachtmann moments $[1]$ of SF F_2 and F_3 are defined as:

$$M_2^{QCD}(N, Q^2) = \int_0^1 \frac{dx \xi^{N+1}}{x^3} F_2(x, Q^2) \frac{3 + 3(N + 1)V + N(N + 2)V^2}{(N + 2)(N + 3)},$$

(1)

$$M_3^{QCD}(N, Q^2) = \int_0^1 \frac{dx \xi^{N+1}}{x^3} F_3(x, Q^2) \frac{1 + (N + 1)V}{(N + 2)},$$

(2)

where

$$\xi = 2x/(1 + V), \quad V = \sqrt{1 + 4M_{\text{nuc.}}^2 x^2/Q^2}.$$

(3)

Equations (1,2), could be expanded into a series in powers of $M_{\text{nuc.}}^2/Q^2$. Retaining only the terms of the order $M_{\text{nuc.}}^2/Q^2$ one could obtain:

\[M_2(N,Q^2) = M_2^{QCD}(N,Q^2) + \frac{N(N-1)}{N+2} \frac{M_2^{QCD}(N+2,Q^2)}{Q^2}, \]
\[M_3(N,Q^2) = M_3^{QCD}(N,Q^2) + \frac{N(N+1)}{N+2} \frac{M_2^{QCD}(N+2,Q^2)}{Q^2}. \]

\(M_2(N,Q^2) \) and \(M_3(N,Q^2) \) are the Mellin moments of the measured SF \(F_2 \) and \(zF_3 \):

\[M_2(N,Q^2) = \int_0^1 dx x^{N-2} F_2(x,Q^2), \]
\[M_3(N,Q^2) = \int_0^1 dx x^{N-2} zF_3(x,Q^2), \quad N = 2,3,... \]

The \(Q^2 \) - evolution of the moments \(M_2^{QCD}(N,Q^2) \) and \(M_3^{QCD}(N,Q^2) \) is given by QCD [2,3]. For the nonsinglet SF:

\[M_3^{QCD}(N,Q^2) = \left[\frac{\sigma_3(Q^2)}{\sigma_3(Q_0^2)} \right]^{4N} M_3^{QCD}(N,Q_0^2), \quad N = 2,3,... \]
\[d_N = \gamma_N^{[0]NS} / 2 \beta_0, \quad \beta_0 = (11 - \frac{2}{3} f). \]
\[\gamma_N^{[0]NS} = \frac{8}{3} \left[1 - \frac{2}{N(N+1)} + 4 \sum_{j=2}^{N} \frac{1}{j} \right]. \]

The unknown coefficients \(M_3^{QCD}(N,Q^2) \) in (8) could be parametrised as the Mellin moments of some function:

\[M_3^{QCD}(N,Q^2) = \int_0^1 dx x^{N-2} A x^\alpha (1-x)^\alpha \gamma_x (1 + \gamma_x), \quad N = 2,3,... \]

where the constants \(A, b, c \) and \(\gamma \) should be determined from the fit of data.

Having in hand the moments (5,8) and following the method [4,5], we can write the structure function \(zF_3 \) in the form:

\[zF_3^{N_{max}}(x,Q^2) = x^\alpha (1-x)^\beta \sum_{n=0}^{N_{max}} \Theta_n^{\alpha,\beta}(x) \sum_{j=0}^{n} c_j^{(n)}(\alpha,\beta) M_j^{N_{max}}(Q^2), \]

where \(\Theta_n^{\alpha,\beta}(x) \) is a set of Jacobi polynomials and \(c_j^{(n)}(\alpha,\beta) \) are the coefficients of the series of \(\Theta_n^{\alpha,\beta}(x) \) in powers of \(x \):

\[\Theta_n^{\alpha,\beta}(x) = \sum_{j=0}^{n} c_j^{(n)}(\beta) x^j. \]
The quantities N_{max}, α and β have to be chosen so as to achieve the most fast convergence of the series on the r.h.s. of Eq. (11) and to reconstruct zF_3 with the accuracy required. Following the results of [5] we use $\alpha = 0.12, \beta = 2.0$ and $N_{\text{max}} = 12$. These numbers guarantee accuracy better than 10^{-3}.

Eq. (11) could be applied to reconstructing SF $F_2(x, Q^2)$ for $0.3 \leq x$ with eq. (1,4) for TMC taken into account.

The parameters A, b, c, y and the parameter A are determined by fitting experimental data. We also consider $M^{*\text{eff}}$ as a free parameter. It should be noted that the parameters a, b, c and y depend on Q_i. We have used experimental points with $Q^2 > 5 GeV^2$ for fitting, in order to avoid high-twist effects and chosen $Q^2_0 = 10 GeV^2$.

The results of concrete calculations made for SF measured in experiments on different targets are presented in Table I.

For the hydrogen target $M^{*\text{eff}}$ reproduces the value of the proton mass. For the iron target the effective mass $M^{*\text{eff}}$ is twice the nucleon mass. The data of the SKAT collaboration on a target which consists of a mixture of Neon and Hydrogen are not precise enough to determine the value of A. So following [7] we have fixed $A = 200 MeV$ and found the value of $M^{*\text{eff}}$: a little bit higher than for the hydrogen target. The increasing effective mass of a nucleon on the nucleus target takes place for a nonsinglet fit both for F_2 and zF_0 SF. It also takes place both for the leading and next to leading order QCD (see results for zF_3 data of CCFR in Table I.). The large value of $M^{*\text{eff}}$ found in the QCD fit of data of DIS on nucleon targets could be considered as indirect evidence of the existence of multiquarks clusters [8] or a few-nucleon correlation in a nucleus [9]. It is also compatible with the measured SF at $x > 1$ on DIS of leptons on the nucleus target [10].

We are thankful to Profs. A. E. Dorokhov, S. B. Gerasimov, A. L. Kataev, N. Stefanis and M. V. Tokarev for fruitful discussions.

This research was partially supported by INTAS (Int ernational Association for the Promotion of Cooperation with Scientists from the Independent States of the Former Soviet Union) under Contract no 93-1180, by the Heisenberg-Landau Program and by the Russian Fond for Fundamental Research Grant N 94-02-04548-a.

<table>
<thead>
<tr>
<th>Collaboration Reaction</th>
<th>Ref.</th>
<th>A [MeV]</th>
<th>$\chi^2_{f.i.}$</th>
<th>$M^{*\text{eff}}$ [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCDMS (μp) F_2</td>
<td>[6]</td>
<td>0.35 < x</td>
<td>130 ± 4</td>
<td>183/223</td>
</tr>
<tr>
<td>SKAT ($\nu Ne,p$) zF_3</td>
<td>[8]</td>
<td>0.05 ≤ x</td>
<td>200 (fix.)</td>
<td>25.3/30</td>
</tr>
<tr>
<td>EMC (μFe) F_2</td>
<td>[9]</td>
<td>0.30 < x</td>
<td>106 ± 26</td>
<td>45.3/45</td>
</tr>
<tr>
<td>CCFR (νFe) F_2</td>
<td>[9]</td>
<td>0.275 ≤ x</td>
<td>146 ± 12</td>
<td>37.9/81</td>
</tr>
<tr>
<td>CCFR (νFe) zF_3</td>
<td>[9]</td>
<td>0.015 ≤ x</td>
<td>64.7 ± 21</td>
<td>81.8/81</td>
</tr>
<tr>
<td>CCFR (νFe) zF_3 NLO</td>
<td>[9]</td>
<td>0.015 ≤ x</td>
<td>116 ± 30</td>
<td>73.4/81</td>
</tr>
</tbody>
</table>
References